1. Bobrowski A., Banasiak J., Interplay between degenerate convergence of semigroups and asymptotic analysis: a study of a singularly perturbed abstract telegraph system. J. Evol. Equ. 9 (2009), 293-314, [MNiSW: 24]

2. Łagodowski Z.A., Strong laws of large numbers for B-valued random fields. Discrete Dyn. Nat. Soc., Article ID 485412, 12 p. (2009). [MNiSW: 27]

3. Mali­now­ska I., Szy­nal D., Infe­rence and pre­dic­tion for a logi­stics distri­bu­tion based on the k- th lower records. Jour­nal of Applied Sta­ti­sti­cal Science, 17(1), (2009), 107–120.

4. Mali­now­ska I., Szy­nal D., Rela­tions for cha­rac­te­ri­stics func­tions of k-th record values from gene­ra­li­zed Pareto and inverse gene­ra­li­zed Pareto distri­bu­tion. Applic­tio­nes Mathe­ma­ti­cae 36 (2), (2009), 157–168. [MNiSW: 9]

5. Mali­now­ska I., Szy­nal D., Infe­rence and pre­dic­tion for a gene­ra­li­zed expo­nen­tial distri­bu­tion based on the k-TH lower records, Inter­na­tio­nal Jour­nal of Pure and Applied Mathe­ma­tics, 52(2), (2009),  211–227. [MNiSW: 3]


1. Bobrowski A., Kimmel M., Kubalińska M., Non-homogeneous infinitely many sites doscrete-time model with exact coalescent. Mathematical Methods in the Applied Sciences, vol.33, nr 6 (2010), 713-732. [MNiSW: 20]

2. Bobrowski A., Kimmel M., Wojdyła T., Asymptotic behavior of a Moran model with mutations, drift and recombinations among multiple loci. J. Math. Biol. 61 (2010), 455-473. [MNiSW: 32]

3. Bobrowski A., Generation of cosine families via Lord Kelvin’s method of images. J. Evol. Equ. 10 (2010), 663-675. [MNiSW: 32 ]

4. Bobrowski A., Lord Kelvin’s method of images in the semigroup theory. Semigroup Forum 81 (2010), 435-445. [MNiSW: 20]

5. Komo­row­ski T., Nie­znaj E., On the asymp­to­tic beha­vior of solu­tions of the heat equ­ation with a ran­dom, long-range cor­re­la­ted poten­tial. Poten­tial Ana­ly­sis, 2, vol. 33, 175-197. [MNiSW: 35]

6. Łagodowski Z.A., Matuła P., On almost sure limiting behavior of weighted sums of random fields. Acta Math. Hungarica, 126 (2010), 16–22. [MNiSW: 20]

7. Łagodowski Z.A., Matuła P., SLLN for random fields under conditions on the bivariate dependence structure, Publ. Math. Debrecen, 76 (2010), 329-339. [MNiSW: 15]


1. Bobrowski A., Wojdyła T, Kimmel M., Time to the MRCA of a sample in a Wright-Fisher model with variable population size. Theoretical Population Biology, 80 (2011), 265-271. [MNiSW: 20]

2. Kuczmaszewska A., Łagodowski Z.,A.,Convergence rates in the SLLN for some classes of dependent random fields. J. Math. Anal. Appl., 380 (2011), 571-584. [MNiSW: 40]

3. Matuła P., Maciej Ziemba M., Generalized covariance inequalities. Central European Journal of Mathematics, vol. 9(2), (2011), 281-293. [MNiSW: 20]


1. Bobrowski A., From diffusions on graphs to Markov chains via asymptotic state lumping. Ann. Henri Poincaré, 13 (2012), 1501-1510, [MNiSW: 25]

2. Bobrowski A., Bogucki R., Two theorems on singularly perturbed semigroups with applications to models of applied mathematics. Discrete and Continuous Dynamical Systems, Series B, vol. 17(3), (2012), 735-757. [MNiSW: 30]

3. Bobrowski A., Morawska K., From a PDE model to an ODE model of dynamics of synaptic depression. Discrete and Continuous Dynamical Systems, Series B, 17(7), (2012), 2313-2327, [MNiSW: 30]

4. Bátkai A., Bobrowski A., On shape preserving semigroups. Arch. Math., 98 (2012), 37- 48. [MNiSW: 20]

5. Murat M., Recurrence relations for moments of doubly compound distributions, International Journal of Pure and Applied Mathematics, Vol. 79, nr 3 (2012), 481-492.


1. Bobrowski A., Chojnacki W., Isolated points of some sets of  bounded cosine families, bounded semigroups, and bounded groups on a Banach space. Studia Mathematica, 217 (3), (2013), 219-241. [MNiSW: 25]

2. Bobrowski A., Mugnolo D., On moments-preserving cosine families and semigroups in C[0; 1], J. Evol. Equ. 13 (2013), no. 4, 715–735. [MNiSW: 35]

3. Bobrowski A., Chojnacki W., Cosine families and semigroups really differ. J. Evol. Equ., 13 (2013), no. 4, 897–916. [MNiSW: 35]

4. Murat M., Bayesian estimation for deformed modified power series distribution. Communications in Statistics -Theory and Methods, 2013, nr 2, vol. 42, 365-384. [MNiSW: 15]

5. Murat M., Szynal D., Moments of discrete distributions via a differential operator, Journal of Mathematical Sciences, nr 4, vol. 191, (2013), 568-581

6. Ziemba M., Tightness criterion and weak convergence fo the generalized empirical process in D[0,1]. ISRN Probability and Statistics, (2013), Article ID 543723, 12 pages


1. Bobrowski A., Gregosiewicz A., A general theorem on generation  of moments-preserving cosine families by Laplace operators in C[0; 1]. Semigroup Forum 88 (2014), 689–701. [MNiSW: 20]

2. Banasiak J., Bobrowski A., A semigroup related to a convex combination of boundary conditions obtained as a result of averaging other semigroups. J. Evol. Equ., (2014), [MNiSW: 35]

3. Gregosiewicz A., Asymptotic behaviour of diffusions on graphs. Probability in Action, vol. 1, (2014), 83-96. [MNiSW: 5]

4. Łagodowski Z.A., An approach to complete convergence for random fields via application of Fuk-Nagaev inequality. arXiv:1411.7848v1 [math. PR], 28 Nov 2014

5. Nieznaj E., A note on mixed moments of random variables governed by Poisson random measure. Probability in Action, vol. 1 (2014),111-120. Politechnika Lubelska [MNiSW: 5]

6. Murat M., Incomplete on moments of random variables governed by Poisson random measure. Probability in Acction, vol.1 (2014), 97-110. Politechnika Lubelska {MNiSW: 5]


1. Bobrowski A., Boundary conditions in evolutionary equations in  biology. w: Evolutionary Equations with Applications in Natural Sciences, Lecture Notes in Mathematics, vol. 2126 (2015), 47–92, [MNiSW: 25]

2. Bobrowski A., Singular perturbations involving fast diffusion. J. Math. Anal. Appl., vol. 427, Issue 2, (2015), 1004-1026 [MNiSW:35]

3. Bobrowski A., On a somewhat forgotten condition of Hasegawa and on Blackwell’s example. Arch. Math., 104 (2015), 237-246. [MNiSW: 20]

4. A. Bobrowski, W. Chojnacki, A. Gregosiewicz, On close-to-scalar one-parameter cosine families, Journal of Mathematical Analysis and Applications, to appear, 2015.

5. BobrowskiA., Gregosiewicz A., Murat M., Functionals-preserving cosine families generated by Laplace operators in C[0,1], Discrete and Continuous Dynamical Systems – Series B, to appear, 2015

6. Matuła p., Ziemba M., A note on large deviation principle for discrete ssociated random variables. Journal of Probability, Volume 2015, Article ID 430837, 7 pages

7. Matuła P., Ziemba M., Covariance and comparison inequalities under quadrant dependence, Periodica Hungarica Matematica. [MNiSW; 15]